Fundamental Scaling Laws in Nanophotonics
نویسندگان
چکیده
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
منابع مشابه
Scaling laws of nonlinear silicon nanophotonics
Scaling properties of two photon absorption, free carrier scattering, Raman scattering and Kerr effect in silicon waveguides is reported. It is shown that the dependence of minority carrier lifetime on waveguide dimensions has a profound impact on the performance of nonlinear optical devices built using silicon waveguides.
متن کاملThe importance of dry and wet merging on the formation and evolution of elliptical galaxies
With the aid of a simple yet robust approach we investigate the influence of dissipationless and dissipative merging on galaxy structure, and the consequent effects on the scaling laws followed by elliptical galaxies. Our results suggest that ellipticals cannot be originated by parabolic merging of low mass spheroids only, even in presence of substantial gas dissipation. However, we also found ...
متن کاملIntraspecific scaling laws of vascular trees.
A fundamental physics-based derivation of intraspecific scaling laws of vascular trees has not been previously realized. Here, we provide such a theoretical derivation for the volume-diameter and flow-length scaling laws of intraspecific vascular trees. In conjunction with the minimum energy hypothesis, this formulation also results in diameter-length, flow-diameter and flow-volume scaling laws...
متن کاملScaling Laws for Throughput Capacity and Delay in Wireless Networks - A Survey
The capacity scaling law of wireless networks has been considered as one of the most fundamental issues. In this survey, we aim at providing a comprehensive overview of the development in the area of scaling laws for throughput capacity and delay in wireless networks. We begin with background information on the notion of throughput capacity of random networks. Based on the benchmark random netw...
متن کاملHow good and for how long: Scaling laws on validity of trajectories
Dynamical conditions for the loss of validity of numerical chaotic solutions of physical systems are already understood. However, the fundamental questions of “how good” and “for how long” the solutions are valid remained unanswered. This work answers these questions by establishing scaling laws for the shadowing distance and for the shadowing time in terms of physically meaningful quantities t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016